Computer Vision Pipeline
Onze computer vision oplossingen combineren deep learning met klassieke computer vision technieken voor robuuste visuele perceptie. We specialiseren ons in real-time object detection, multi-object tracking, 3D pose estimation en semantic segmentation voor industriële en autonome systemen.
Technische Implementatie (voorbeeld)
// Real-time Multi-Object Detection en Tracking Pipeline
import cv2
import torch
import numpy as np
from typing import List, Dict, Tuple
from collections import defaultdict
class AdvancedVisionPipeline:
def __init__(self, config: Dict):
# Initialize detection models
self.detector = self.load_detection_model(config['detector'])
self.tracker = DeepSORTTracker(config['tracker'])
self.pose_estimator = PoseEstimationModel(config['pose'])
self.segmentation_model = SegmentationModel(config['segmentation'])
# Performance optimization
self.tensorrt_engine = self.build_tensorrt_engine()
self.cuda_stream = torch.cuda.Stream()
# Temporal consistency
self.temporal_buffer = TemporalBuffer(size=5)
self.kalman_filters = defaultdict(lambda: ExtendedKalmanFilter())
def process_frame(self, frame: np.ndarray, timestamp: float) -> Dict:
with torch.cuda.stream(self.cuda_stream):
# Preprocessing met GPU acceleratie
preprocessed = self.preprocess_frame(frame)
# Parallelle inferentie voor multiple tasks
detection_results = self.detect_objects(preprocessed)
segmentation_mask = self.segment_frame(preprocessed)
# Post-processing en tracking
tracked_objects = self.tracker.update(detection_results, timestamp)
# 3D pose estimation voor gedetecteerde objecten
poses_3d = []
for obj in tracked_objects:
if obj['confidence'] > self.pose_threshold:
pose = self.estimate_3d_pose(frame, obj['bbox'], obj['class'])
poses_3d.append({
'track_id': obj['track_id'],
'pose_6dof': pose,
'uncertainty': self.calculate_pose_uncertainty(pose)
})
# Temporal consistency en filtering
consistent_results = self.apply_temporal_filtering(
tracked_objects, poses_3d, timestamp
)
return {
'objects': consistent_results,
'segmentation': segmentation_mask,
'poses_3d': poses_3d,
'processing_time': self.get_processing_time(),
'frame_id': self.frame_counter
}
class DeepSORTTracker:
def __init__(self, config: Dict):
self.max_age = config.get('max_age', 30)
self.min_hits = config.get('min_hits', 3)
self.iou_threshold = config.get('iou_threshold', 0.3)
# Deep appearance descriptor
self.feature_extractor = self.load_reid_model()
self.tracks = []
self.track_id_counter = 0
def update(self, detections: List[Dict], timestamp: float) -> List[Dict]:
# Prediction step voor alle actieve tracks
for track in self.tracks:
track.predict(timestamp)
# Data association met Hungarian algorithm
matched_tracks, unmatched_dets, unmatched_tracks = self.associate_detections(
detections, self.tracks
)
# Update matched tracks
for track_idx, det_idx in matched_tracks:
self.tracks[track_idx].update(detections[det_idx], timestamp)
# Initialize nieuwe tracks voor unmatched detections
for det_idx in unmatched_dets:
if detections[det_idx]['confidence'] > self.confidence_threshold:
new_track = Track(
detection=detections[det_idx],
track_id=self.track_id_counter,
timestamp=timestamp
)
self.tracks.append(new_track)
self.track_id_counter += 1
# Remove tracks die te lang niet geupdate zijn
self.tracks = [track for track in self.tracks
if track.time_since_update < self.max_age]
# Return confirmed tracks
return [track.to_dict() for track in self.tracks
if track.hits >= self.min_hits]
def associate_detections(self, detections, tracks):
# Bereken cost matrix (IoU + appearance features)
cost_matrix = np.zeros((len(tracks), len(detections)))
for t, track in enumerate(tracks):
for d, detection in enumerate(detections):
# IoU distance
iou_cost = 1 - self.calculate_iou(track.bbox, detection['bbox'])
# Appearance feature distance
feature_cost = self.calculate_feature_distance(
track.features, detection['features']
)
# Combined cost
cost_matrix[t, d] = 0.7 * iou_cost + 0.3 * feature_cost
# Hungarian algorithm voor optimale assignment
matched_indices = self.solve_assignment(cost_matrix)
# Filter matches met te hoge cost
matched_tracks = []
unmatched_detections = list(range(len(detections)))
unmatched_tracks = list(range(len(tracks)))
for track_idx, det_idx in matched_indices:
if cost_matrix[track_idx, det_idx] <= self.iou_threshold:
matched_tracks.append((track_idx, det_idx))
unmatched_detections.remove(det_idx)
unmatched_tracks.remove(track_idx)
return matched_tracks, unmatched_detections, unmatched_tracks
# Stereo Vision Depth Estimation
class StereoVisionProcessor:
def __init__(self, camera_params: Dict):
self.left_camera = camera_params['left']
self.right_camera = camera_params['right']
self.baseline = camera_params['baseline'] # in meters
# Stereo matching algorithm
self.stereo_matcher = cv2.StereoSGBM_create(
minDisparity=0,
numDisparities=64,
blockSize=11,
P1=8 * 3 * 11**2,
P2=32 * 3 * 11**2,
disp12MaxDiff=1,
uniquenessRatio=15,
speckleWindowSize=100,
speckleRange=32
)
def compute_depth_map(self, left_frame: np.ndarray,
right_frame: np.ndarray) -> np.ndarray:
# Rectificatie van stereo images
left_rect, right_rect = self.rectify_stereo_pair(left_frame, right_frame)
# Dispariteit berekening
disparity = self.stereo_matcher.compute(left_rect, right_rect)
disparity = disparity.astype(np.float32) / 16.0
# Conversie naar depth map
focal_length = self.left_camera['focal_length']
depth_map = (focal_length * self.baseline) / (disparity + 1e-6)
# Post-processing filters
depth_map = cv2.medianBlur(depth_map.astype(np.uint16), 5)
depth_map = self.apply_temporal_filtering(depth_map)
return depth_map
def get_3d_coordinates(self, pixel_coords: Tuple[int, int],
depth_map: np.ndarray) -> Tuple[float, float, float]:
u, v = pixel_coords
depth = depth_map[v, u]
if depth > 0:
# Back-project naar 3D coordinates
cx, cy = self.left_camera['principal_point']
fx, fy = self.left_camera['focal_length']
x = (u - cx) * depth / fx
y = (v - cy) * depth / fy
z = depth
return (x, y, z)
else:
return None
Real-time Object Detection
YOLO-v8/v9 implementaties met custom training pipelines voor specifieke industriële objecten. TensorRT optimalisatie voor sub-millisecond inferentie op NVIDIA hardware met dynamic batching.
Multi-Object Tracking
DeepSORT en ByteTrack algoritmen met appearance-based re-identification. Robuste tracking door occlusies met Kalman filtering en Hungarian assignment algorithms.
3D Pose Estimation
6DOF object pose estimation met PnP algorithms en stereo vision. MediaPipe integratie voor human pose detection met sub-centimeter accuracy in gecontroleerde omgevingen.
Semantic Segmentation
DeepLabV3+ en Mask R-CNN voor pixel-level scene understanding. Real-time instance segmentation voor robotica pick-and-place operaties met panoptic segmentation.
Platform & Hardware Integration
Onze computer vision oplossingen zijn geoptimaliseerd voor diverse hardware platforms, van edge devices tot high-performance GPU clusters. We ondersteunen real-time inferentie op NVIDIA Jetson, Intel RealSense integratie, en cloud-based batch processing.
Edge Computing Platforms
NVIDIA Jetson: AGX Orin, Xavier NX
Intel RealSense: D435i, L515 depth cameras
Google Coral: Edge TPU acceleration
Qualcomm: Snapdragon mobile platforms
GPU Acceleration
NVIDIA TensorRT: Model optimization
CUDA/cuDNN: Custom kernel development
Multi-GPU: Distributed inference
Mixed Precision: FP16/INT8 quantization
Camera Systems
Industrial: Basler, FLIR, Allied Vision
Stereo Vision: ZED, OAK-D cameras
Thermal: FLIR Lepton, Seek Thermal
High-Speed: Phantom, IDT cameras
Software Frameworks
OpenCV: Computer vision primitives
MediaPipe: Real-time ML pipelines
TensorFlow/PyTorch: Deep learning frameworks
ROS2: Robotics middleware integration