Advanced Computer Vision

Cutting-edge computer vision oplossingen voor complexe visuele analysetaken en real-time toepassingen

← Terug naar overzicht

Computer Vision Pipeline

Onze computer vision oplossingen combineren deep learning met klassieke computer vision technieken voor robuuste visuele perceptie. We specialiseren ons in real-time object detection, multi-object tracking, 3D pose estimation en semantic segmentation voor industriële en autonome systemen.

Real-time Computer Vision Processing Pipeline Input Sources RGB Camera 1920x1080@60fps Depth Camera 640x480@30fps Stereo Vision Baseline: 120mm LiDAR 64 beams, 10Hz Thermal IR 320x240@9Hz AI Processing Modules Object Detection YOLO-v8 + Custom Heads TensorRT Optimized ~2ms inference Multi-Object Tracking DeepSORT + Kalman ID Management Occlusion Handling Semantic Segmentation DeepLabV3+ / Mask R-CNN Per-pixel Classification 20+ Object Classes 3D Pose Estimation MediaPipe + Custom 6DoF Object Poses Sub-cm Accuracy Sensor Fusion & Temporal Consistency Extended Kalman Filter Bayesian State Estimation Multi-modal Uncertainty Quantification Outputs 3D Scene Graph Objects + Relations Motion Prediction 5s Trajectory Safety Alerts Risk Assessment Robot Commands 6DOF Poses Analytics Metrics + Logs Performance Metrics Latency: ~5ms Throughput: 200 FPS Accuracy: 96.2% mAP GPU: 65% utilization

Technische Implementatie (voorbeeld)

// Real-time Multi-Object Detection en Tracking Pipeline
import cv2
import torch
import numpy as np
from typing import List, Dict, Tuple
from collections import defaultdict

class AdvancedVisionPipeline:
    def __init__(self, config: Dict):
        # Initialize detection models
        self.detector = self.load_detection_model(config['detector'])
        self.tracker = DeepSORTTracker(config['tracker'])
        self.pose_estimator = PoseEstimationModel(config['pose'])
        self.segmentation_model = SegmentationModel(config['segmentation'])

        # Performance optimization
        self.tensorrt_engine = self.build_tensorrt_engine()
        self.cuda_stream = torch.cuda.Stream()

        # Temporal consistency
        self.temporal_buffer = TemporalBuffer(size=5)
        self.kalman_filters = defaultdict(lambda: ExtendedKalmanFilter())

    def process_frame(self, frame: np.ndarray, timestamp: float) -> Dict:
        with torch.cuda.stream(self.cuda_stream):
            # Preprocessing met GPU acceleratie
            preprocessed = self.preprocess_frame(frame)

            # Parallelle inferentie voor multiple tasks
            detection_results = self.detect_objects(preprocessed)
            segmentation_mask = self.segment_frame(preprocessed)

            # Post-processing en tracking
            tracked_objects = self.tracker.update(detection_results, timestamp)

            # 3D pose estimation voor gedetecteerde objecten
            poses_3d = []
            for obj in tracked_objects:
                if obj['confidence'] > self.pose_threshold:
                    pose = self.estimate_3d_pose(frame, obj['bbox'], obj['class'])
                    poses_3d.append({
                        'track_id': obj['track_id'],
                        'pose_6dof': pose,
                        'uncertainty': self.calculate_pose_uncertainty(pose)
                    })

            # Temporal consistency en filtering
            consistent_results = self.apply_temporal_filtering(
                tracked_objects, poses_3d, timestamp
            )

            return {
                'objects': consistent_results,
                'segmentation': segmentation_mask,
                'poses_3d': poses_3d,
                'processing_time': self.get_processing_time(),
                'frame_id': self.frame_counter
            }

class DeepSORTTracker:
    def __init__(self, config: Dict):
        self.max_age = config.get('max_age', 30)
        self.min_hits = config.get('min_hits', 3)
        self.iou_threshold = config.get('iou_threshold', 0.3)

        # Deep appearance descriptor
        self.feature_extractor = self.load_reid_model()
        self.tracks = []
        self.track_id_counter = 0

    def update(self, detections: List[Dict], timestamp: float) -> List[Dict]:
        # Prediction step voor alle actieve tracks
        for track in self.tracks:
            track.predict(timestamp)

        # Data association met Hungarian algorithm
        matched_tracks, unmatched_dets, unmatched_tracks = self.associate_detections(
            detections, self.tracks
        )

        # Update matched tracks
        for track_idx, det_idx in matched_tracks:
            self.tracks[track_idx].update(detections[det_idx], timestamp)

        # Initialize nieuwe tracks voor unmatched detections
        for det_idx in unmatched_dets:
            if detections[det_idx]['confidence'] > self.confidence_threshold:
                new_track = Track(
                    detection=detections[det_idx],
                    track_id=self.track_id_counter,
                    timestamp=timestamp
                )
                self.tracks.append(new_track)
                self.track_id_counter += 1

        # Remove tracks die te lang niet geupdate zijn
        self.tracks = [track for track in self.tracks
                      if track.time_since_update < self.max_age]

        # Return confirmed tracks
        return [track.to_dict() for track in self.tracks
                if track.hits >= self.min_hits]

    def associate_detections(self, detections, tracks):
        # Bereken cost matrix (IoU + appearance features)
        cost_matrix = np.zeros((len(tracks), len(detections)))

        for t, track in enumerate(tracks):
            for d, detection in enumerate(detections):
                # IoU distance
                iou_cost = 1 - self.calculate_iou(track.bbox, detection['bbox'])

                # Appearance feature distance
                feature_cost = self.calculate_feature_distance(
                    track.features, detection['features']
                )

                # Combined cost
                cost_matrix[t, d] = 0.7 * iou_cost + 0.3 * feature_cost

        # Hungarian algorithm voor optimale assignment
        matched_indices = self.solve_assignment(cost_matrix)

        # Filter matches met te hoge cost
        matched_tracks = []
        unmatched_detections = list(range(len(detections)))
        unmatched_tracks = list(range(len(tracks)))

        for track_idx, det_idx in matched_indices:
            if cost_matrix[track_idx, det_idx] <= self.iou_threshold:
                matched_tracks.append((track_idx, det_idx))
                unmatched_detections.remove(det_idx)
                unmatched_tracks.remove(track_idx)

        return matched_tracks, unmatched_detections, unmatched_tracks

# Stereo Vision Depth Estimation
class StereoVisionProcessor:
    def __init__(self, camera_params: Dict):
        self.left_camera = camera_params['left']
        self.right_camera = camera_params['right']
        self.baseline = camera_params['baseline']  # in meters

        # Stereo matching algorithm
        self.stereo_matcher = cv2.StereoSGBM_create(
            minDisparity=0,
            numDisparities=64,
            blockSize=11,
            P1=8 * 3 * 11**2,
            P2=32 * 3 * 11**2,
            disp12MaxDiff=1,
            uniquenessRatio=15,
            speckleWindowSize=100,
            speckleRange=32
        )

    def compute_depth_map(self, left_frame: np.ndarray,
                         right_frame: np.ndarray) -> np.ndarray:
        # Rectificatie van stereo images
        left_rect, right_rect = self.rectify_stereo_pair(left_frame, right_frame)

        # Dispariteit berekening
        disparity = self.stereo_matcher.compute(left_rect, right_rect)
        disparity = disparity.astype(np.float32) / 16.0

        # Conversie naar depth map
        focal_length = self.left_camera['focal_length']
        depth_map = (focal_length * self.baseline) / (disparity + 1e-6)

        # Post-processing filters
        depth_map = cv2.medianBlur(depth_map.astype(np.uint16), 5)
        depth_map = self.apply_temporal_filtering(depth_map)

        return depth_map

    def get_3d_coordinates(self, pixel_coords: Tuple[int, int],
                          depth_map: np.ndarray) -> Tuple[float, float, float]:
        u, v = pixel_coords
        depth = depth_map[v, u]

        if depth > 0:
            # Back-project naar 3D coordinates
            cx, cy = self.left_camera['principal_point']
            fx, fy = self.left_camera['focal_length']

            x = (u - cx) * depth / fx
            y = (v - cy) * depth / fy
            z = depth

            return (x, y, z)
        else:
            return None

Real-time Object Detection

YOLO-v8/v9 implementaties met custom training pipelines voor specifieke industriële objecten. TensorRT optimalisatie voor sub-millisecond inferentie op NVIDIA hardware met dynamic batching.

Multi-Object Tracking

DeepSORT en ByteTrack algoritmen met appearance-based re-identification. Robuste tracking door occlusies met Kalman filtering en Hungarian assignment algorithms.

3D Pose Estimation

6DOF object pose estimation met PnP algorithms en stereo vision. MediaPipe integratie voor human pose detection met sub-centimeter accuracy in gecontroleerde omgevingen.

Semantic Segmentation

DeepLabV3+ en Mask R-CNN voor pixel-level scene understanding. Real-time instance segmentation voor robotica pick-and-place operaties met panoptic segmentation.

Platform & Hardware Integration

Onze computer vision oplossingen zijn geoptimaliseerd voor diverse hardware platforms, van edge devices tot high-performance GPU clusters. We ondersteunen real-time inferentie op NVIDIA Jetson, Intel RealSense integratie, en cloud-based batch processing.

Edge Computing Platforms

NVIDIA Jetson: AGX Orin, Xavier NX
Intel RealSense: D435i, L515 depth cameras
Google Coral: Edge TPU acceleration
Qualcomm: Snapdragon mobile platforms

GPU Acceleration

NVIDIA TensorRT: Model optimization
CUDA/cuDNN: Custom kernel development
Multi-GPU: Distributed inference
Mixed Precision: FP16/INT8 quantization

Camera Systems

Industrial: Basler, FLIR, Allied Vision
Stereo Vision: ZED, OAK-D cameras
Thermal: FLIR Lepton, Seek Thermal
High-Speed: Phantom, IDT cameras

Software Frameworks

OpenCV: Computer vision primitives
MediaPipe: Real-time ML pipelines
TensorFlow/PyTorch: Deep learning frameworks
ROS2: Robotics middleware integration