Explainable AI & Monitoring

Transparante AI-systemen met interpretabiliteit en continue monitoring voor enterprise-toepassingen

← Terug naar overzicht

Explainable AI Framework

Onze Explainable AI oplossingen bieden complete transparantie in AI decision-making met attribution methods, causal inference en model interpretability. We implementeren SHAP, LIME, gradient-based explanations en custom interpretability frameworks voor enterprise compliance en audit trails.

Explainable AI & Model Interpretability Pipeline Model Inputs Training Data Model Predictions Feature Values Model Weights Attention Maps Gradient Flows Decision Paths Uncertainty Scores Explainability Methods Attribution Methods SHAP • LIME • DeepLIFT Integrated Gradients Attention Weights Interpretability Decision Trees Rule Extraction Surrogate Models Causal Analysis Causal Inference Counterfactuals DoWhy Framework Fairness Analysis Bias Detection Group Fairness Individual Fairness Model Monitoring Drift Detection Performance Tracking Evidently AI Uncertainty Bayesian Neural MC Dropout Ensemble Methods Compliance & Audit Framework GDPR Right to Explanation • EU AI Act Model Cards • Audit Trails • Risk Assessment Governance Frameworks • Ethical Guidelines Explanations Feature Importance Decision Rules Counterfactuals Confidence Scores Visual Explanations Audit Reports Risk Assessments Model Cards Explainability Metrics: Faithfulness: 94% Stability: 91% Comprehensibility: 87%

Technische Implementatie (voorbeeld)

// Comprehensive Explainable AI Framework
import shap
import lime
import numpy as np
import pandas as pd
from typing import Dict, List, Optional, Union, Any
from sklearn.metrics import accuracy_score, precision_score, recall_score

class ExplainableAIFramework:
    def __init__(self, model, config: Dict):
        self.model = model
        self.config = config

        # Initialize explainability methods
        self.shap_explainer = None
        self.lime_explainer = None
        self.attention_analyzer = AttentionAnalyzer()

        # Monitoring components
        self.drift_detector = ModelDriftDetector()
        self.fairness_analyzer = FairnessAnalyzer()
        self.uncertainty_estimator = UncertaintyEstimator()

        # Compliance framework
        self.audit_logger = AuditLogger()
        self.model_card_generator = ModelCardGenerator()

    def initialize_explainers(self, X_train: np.ndarray, X_background: np.ndarray = None):
        """Initialize SHAP and LIME explainers"""
        # SHAP explainer initialization
        if hasattr(self.model, 'predict_proba'):
            self.shap_explainer = shap.Explainer(
                self.model.predict_proba,
                X_background if X_background is not None else X_train[:100]
            )
        else:
            self.shap_explainer = shap.Explainer(self.model.predict, X_train[:100])

        # LIME explainer for tabular data
        if self.config.get('data_type') == 'tabular':
            self.lime_explainer = lime.lime_tabular.LimeTabularExplainer(
                X_train,
                feature_names=self.config.get('feature_names'),
                class_names=self.config.get('class_names'),
                mode='classification' if hasattr(self.model, 'predict_proba') else 'regression'
            )

    def explain_prediction(self, instance: np.ndarray,
                          methods: List[str] = ['shap', 'lime']) -> Dict:
        """Generate comprehensive explanation for a single prediction"""
        explanations = {
            'prediction': self.model.predict([instance])[0],
            'confidence': self.get_prediction_confidence(instance),
            'explanations': {},
            'uncertainty': self.uncertainty_estimator.estimate(instance)
        }

        # SHAP explanation
        if 'shap' in methods and self.shap_explainer:
            shap_values = self.shap_explainer([instance])
            explanations['explanations']['shap'] = {
                'values': shap_values.values[0],
                'base_value': shap_values.base_values[0],
                'feature_importance': self.rank_feature_importance(shap_values.values[0])
            }

        # LIME explanation
        if 'lime' in methods and self.lime_explainer:
            lime_explanation = self.lime_explainer.explain_instance(
                instance,
                self.model.predict_proba if hasattr(self.model, 'predict_proba') else self.model.predict,
                num_features=self.config.get('num_features', 10)
            )
            explanations['explanations']['lime'] = {
                'local_explanation': lime_explanation.as_list(),
                'score': lime_explanation.score
            }

        # Counterfactual explanation
        if 'counterfactual' in methods:
            counterfactuals = self.generate_counterfactuals(instance)
            explanations['explanations']['counterfactual'] = counterfactuals

        return explanations

    def generate_counterfactuals(self, instance: np.ndarray,
                               num_counterfactuals: int = 3) -> List[Dict]:
        """Generate counterfactual explanations"""
        counterfactuals = []
        original_prediction = self.model.predict([instance])[0]

        for i in range(num_counterfactuals):
            # Perturbation-based counterfactual generation
            perturbed_instance = self.perturb_instance(instance, perturbation_strength=0.1 * (i + 1))
            new_prediction = self.model.predict([perturbed_instance])[0]

            if new_prediction != original_prediction:
                counterfactuals.append({
                    'instance': perturbed_instance,
                    'prediction': new_prediction,
                    'changes': self.compute_feature_changes(instance, perturbed_instance),
                    'distance': np.linalg.norm(instance - perturbed_instance)
                })

        return sorted(counterfactuals, key=lambda x: x['distance'])

    def monitor_model_performance(self, X_new: np.ndarray, y_true: np.ndarray = None) -> Dict:
        """Comprehensive model monitoring"""
        monitoring_results = {
            'timestamp': pd.Timestamp.now(),
            'data_statistics': self.compute_data_statistics(X_new),
            'drift_analysis': {},
            'performance_metrics': {},
            'fairness_metrics': {}
        }

        # Data drift detection
        drift_results = self.drift_detector.detect_drift(X_new)
        monitoring_results['drift_analysis'] = {
            'statistical_drift': drift_results['statistical_tests'],
            'distribution_shift': drift_results['distribution_metrics'],
            'feature_drift': drift_results['feature_level_drift']
        }

        # Performance monitoring (if ground truth available)
        if y_true is not None:
            y_pred = self.model.predict(X_new)
            monitoring_results['performance_metrics'] = {
                'accuracy': accuracy_score(y_true, y_pred),
                'precision': precision_score(y_true, y_pred, average='weighted'),
                'recall': recall_score(y_true, y_pred, average='weighted'),
                'prediction_distribution': np.bincount(y_pred) / len(y_pred)
            }

        # Fairness analysis
        if self.config.get('protected_attributes'):
            fairness_metrics = self.fairness_analyzer.analyze_fairness(
                X_new, self.model.predict(X_new), self.config['protected_attributes']
            )
            monitoring_results['fairness_metrics'] = fairness_metrics

        # Log monitoring results
        self.audit_logger.log_monitoring_event(monitoring_results)

        return monitoring_results

class ModelDriftDetector:
    def __init__(self):
        self.reference_stats = None
        self.drift_threshold = 0.05

    def detect_drift(self, X_new: np.ndarray) -> Dict:
        """Detect various types of model drift"""
        drift_results = {
            'statistical_tests': {},
            'distribution_metrics': {},
            'feature_level_drift': {}
        }

        if self.reference_stats is None:
            self.reference_stats = self.compute_reference_statistics(X_new)
            return drift_results

        # Statistical tests voor drift detection
        from scipy import stats

        for i, feature_name in enumerate(self.config.get('feature_names', [])):
            # Kolmogorov-Smirnov test
            ks_stat, ks_p_value = stats.ks_2samp(
                self.reference_stats['feature_distributions'][i],
                X_new[:, i]
            )

            # Population Stability Index
            psi = self.calculate_psi(
                self.reference_stats['feature_distributions'][i],
                X_new[:, i]
            )

            drift_results['feature_level_drift'][feature_name] = {
                'ks_statistic': ks_stat,
                'ks_p_value': ks_p_value,
                'psi': psi,
                'drift_detected': ks_p_value < self.drift_threshold or psi > 0.2
            }

        return drift_results

    def calculate_psi(self, reference: np.ndarray, current: np.ndarray,
                     bins: int = 10) -> float:
        """Calculate Population Stability Index"""
        # Create bins based on reference distribution
        bin_edges = np.histogram_bin_edges(reference, bins=bins)

        # Calculate distributions
        ref_hist, _ = np.histogram(reference, bins=bin_edges)
        cur_hist, _ = np.histogram(current, bins=bin_edges)

        # Normalize to percentages
        ref_pct = ref_hist / len(reference) + 1e-6  # Small epsilon to avoid log(0)
        cur_pct = cur_hist / len(current) + 1e-6

        # Calculate PSI
        psi = np.sum((cur_pct - ref_pct) * np.log(cur_pct / ref_pct))

        return psi

class FairnessAnalyzer:
    def analyze_fairness(self, X: np.ndarray, y_pred: np.ndarray,
                        protected_attributes: List[str]) -> Dict:
        """Comprehensive fairness analysis"""
        fairness_metrics = {}

        for attr in protected_attributes:
            attr_index = self.config['feature_names'].index(attr)
            protected_groups = np.unique(X[:, attr_index])

            group_metrics = {}
            for group in protected_groups:
                group_mask = X[:, attr_index] == group
                group_predictions = y_pred[group_mask]

                group_metrics[f'group_{group}'] = {
                    'size': np.sum(group_mask),
                    'positive_rate': np.mean(group_predictions == 1),
                    'prediction_distribution': np.bincount(group_predictions) / len(group_predictions)
                }

            # Calculate fairness metrics
            fairness_metrics[attr] = {
                'group_metrics': group_metrics,
                'demographic_parity': self.calculate_demographic_parity(group_metrics),
                'equalized_odds': self.calculate_equalized_odds(group_metrics),
                'disparate_impact': self.calculate_disparate_impact(group_metrics)
            }

        return fairness_metrics

    def calculate_demographic_parity(self, group_metrics: Dict) -> float:
        """Calculate demographic parity difference"""
        positive_rates = [metrics['positive_rate'] for metrics in group_metrics.values()]
        return max(positive_rates) - min(positive_rates)

# Model Card Generation voor compliance
class ModelCardGenerator:
    def generate_model_card(self, model, training_data: Dict,
                          performance_metrics: Dict, fairness_analysis: Dict) -> Dict:
        """Generate comprehensive model card"""
        model_card = {
            'model_details': {
                'model_type': type(model).__name__,
                'model_version': self.config.get('model_version', '1.0'),
                'training_date': pd.Timestamp.now().isoformat(),
                'intended_use': self.config.get('intended_use', ''),
                'out_of_scope_uses': self.config.get('out_of_scope_uses', [])
            },
            'training_data': {
                'dataset_name': training_data.get('dataset_name'),
                'dataset_size': training_data.get('dataset_size'),
                'feature_statistics': training_data.get('feature_statistics'),
                'preprocessing_steps': training_data.get('preprocessing_steps', [])
            },
            'evaluation_data': training_data.get('evaluation_data', {}),
            'quantitative_analysis': {
                'performance_metrics': performance_metrics,
                'fairness_metrics': fairness_analysis
            },
            'ethical_considerations': {
                'bias_analysis': fairness_analysis,
                'environmental_impact': self.config.get('environmental_impact'),
                'recommendations': self.config.get('ethical_recommendations', [])
            },
            'technical_specifications': {
                'model_architecture': self.config.get('model_architecture'),
                'hardware_requirements': self.config.get('hardware_requirements'),
                'software_dependencies': self.config.get('software_dependencies', [])
            }
        }

        return model_card

Attribution Methods

SHAP, LIME, Integrated Gradients en DeepLIFT voor feature importance attribution. Gradient-based explanations voor deep learning models met attention visualization en saliency mapping.

Model Drift Detection

Real-time monitoring van data drift, concept drift en performance degradation. Population Stability Index, Kolmogorov-Smirnov tests en distribution shift detection met automated alerting.

Fairness & Bias Analysis

Comprehensive bias detection met demographic parity, equalized odds en disparate impact analysis. Group fairness metrics en individual fairness assessment voor responsible AI deployment.

Compliance & Governance

GDPR Article 22 compliance, EU AI Act alignment en model cards generation. Audit trails, risk assessment frameworks en governance workflows voor enterprise AI systems.

Platform & Framework Integration

Onze explainable AI oplossingen integreren met leading ML platforms en monitoring tools. Van cloud-native deployment tot on-premises installaties, we ondersteunen enterprise-grade explainability en compliance workflows.

Explainability Libraries

SHAP: TreeExplainer, DeepExplainer
LIME: Tabular, Image, Text explainers
Captum: PyTorch interpretability
InterpretML: Microsoft explainability

Monitoring Platforms

Evidently: ML monitoring dashboards
WhyLabs: Data quality monitoring
Weights & Biases: Experiment tracking
MLflow: Model lifecycle management

Enterprise Integration

Kubernetes: Scalable deployment
Apache Kafka: Real-time monitoring
Grafana: Visualization dashboards
Prometheus: Metrics collection

Compliance Frameworks

Model Cards: Documentation standards
Audit Trails: Decision logging
Risk Assessment: Impact analysis
Governance: Policy enforcement