Explainable AI Framework
Onze Explainable AI oplossingen bieden complete transparantie in AI decision-making met attribution methods, causal inference en model interpretability. We implementeren SHAP, LIME, gradient-based explanations en custom interpretability frameworks voor enterprise compliance en audit trails.
Technische Implementatie (voorbeeld)
// Comprehensive Explainable AI Framework
import shap
import lime
import numpy as np
import pandas as pd
from typing import Dict, List, Optional, Union, Any
from sklearn.metrics import accuracy_score, precision_score, recall_score
class ExplainableAIFramework:
def __init__(self, model, config: Dict):
self.model = model
self.config = config
# Initialize explainability methods
self.shap_explainer = None
self.lime_explainer = None
self.attention_analyzer = AttentionAnalyzer()
# Monitoring components
self.drift_detector = ModelDriftDetector()
self.fairness_analyzer = FairnessAnalyzer()
self.uncertainty_estimator = UncertaintyEstimator()
# Compliance framework
self.audit_logger = AuditLogger()
self.model_card_generator = ModelCardGenerator()
def initialize_explainers(self, X_train: np.ndarray, X_background: np.ndarray = None):
"""Initialize SHAP and LIME explainers"""
# SHAP explainer initialization
if hasattr(self.model, 'predict_proba'):
self.shap_explainer = shap.Explainer(
self.model.predict_proba,
X_background if X_background is not None else X_train[:100]
)
else:
self.shap_explainer = shap.Explainer(self.model.predict, X_train[:100])
# LIME explainer for tabular data
if self.config.get('data_type') == 'tabular':
self.lime_explainer = lime.lime_tabular.LimeTabularExplainer(
X_train,
feature_names=self.config.get('feature_names'),
class_names=self.config.get('class_names'),
mode='classification' if hasattr(self.model, 'predict_proba') else 'regression'
)
def explain_prediction(self, instance: np.ndarray,
methods: List[str] = ['shap', 'lime']) -> Dict:
"""Generate comprehensive explanation for a single prediction"""
explanations = {
'prediction': self.model.predict([instance])[0],
'confidence': self.get_prediction_confidence(instance),
'explanations': {},
'uncertainty': self.uncertainty_estimator.estimate(instance)
}
# SHAP explanation
if 'shap' in methods and self.shap_explainer:
shap_values = self.shap_explainer([instance])
explanations['explanations']['shap'] = {
'values': shap_values.values[0],
'base_value': shap_values.base_values[0],
'feature_importance': self.rank_feature_importance(shap_values.values[0])
}
# LIME explanation
if 'lime' in methods and self.lime_explainer:
lime_explanation = self.lime_explainer.explain_instance(
instance,
self.model.predict_proba if hasattr(self.model, 'predict_proba') else self.model.predict,
num_features=self.config.get('num_features', 10)
)
explanations['explanations']['lime'] = {
'local_explanation': lime_explanation.as_list(),
'score': lime_explanation.score
}
# Counterfactual explanation
if 'counterfactual' in methods:
counterfactuals = self.generate_counterfactuals(instance)
explanations['explanations']['counterfactual'] = counterfactuals
return explanations
def generate_counterfactuals(self, instance: np.ndarray,
num_counterfactuals: int = 3) -> List[Dict]:
"""Generate counterfactual explanations"""
counterfactuals = []
original_prediction = self.model.predict([instance])[0]
for i in range(num_counterfactuals):
# Perturbation-based counterfactual generation
perturbed_instance = self.perturb_instance(instance, perturbation_strength=0.1 * (i + 1))
new_prediction = self.model.predict([perturbed_instance])[0]
if new_prediction != original_prediction:
counterfactuals.append({
'instance': perturbed_instance,
'prediction': new_prediction,
'changes': self.compute_feature_changes(instance, perturbed_instance),
'distance': np.linalg.norm(instance - perturbed_instance)
})
return sorted(counterfactuals, key=lambda x: x['distance'])
def monitor_model_performance(self, X_new: np.ndarray, y_true: np.ndarray = None) -> Dict:
"""Comprehensive model monitoring"""
monitoring_results = {
'timestamp': pd.Timestamp.now(),
'data_statistics': self.compute_data_statistics(X_new),
'drift_analysis': {},
'performance_metrics': {},
'fairness_metrics': {}
}
# Data drift detection
drift_results = self.drift_detector.detect_drift(X_new)
monitoring_results['drift_analysis'] = {
'statistical_drift': drift_results['statistical_tests'],
'distribution_shift': drift_results['distribution_metrics'],
'feature_drift': drift_results['feature_level_drift']
}
# Performance monitoring (if ground truth available)
if y_true is not None:
y_pred = self.model.predict(X_new)
monitoring_results['performance_metrics'] = {
'accuracy': accuracy_score(y_true, y_pred),
'precision': precision_score(y_true, y_pred, average='weighted'),
'recall': recall_score(y_true, y_pred, average='weighted'),
'prediction_distribution': np.bincount(y_pred) / len(y_pred)
}
# Fairness analysis
if self.config.get('protected_attributes'):
fairness_metrics = self.fairness_analyzer.analyze_fairness(
X_new, self.model.predict(X_new), self.config['protected_attributes']
)
monitoring_results['fairness_metrics'] = fairness_metrics
# Log monitoring results
self.audit_logger.log_monitoring_event(monitoring_results)
return monitoring_results
class ModelDriftDetector:
def __init__(self):
self.reference_stats = None
self.drift_threshold = 0.05
def detect_drift(self, X_new: np.ndarray) -> Dict:
"""Detect various types of model drift"""
drift_results = {
'statistical_tests': {},
'distribution_metrics': {},
'feature_level_drift': {}
}
if self.reference_stats is None:
self.reference_stats = self.compute_reference_statistics(X_new)
return drift_results
# Statistical tests voor drift detection
from scipy import stats
for i, feature_name in enumerate(self.config.get('feature_names', [])):
# Kolmogorov-Smirnov test
ks_stat, ks_p_value = stats.ks_2samp(
self.reference_stats['feature_distributions'][i],
X_new[:, i]
)
# Population Stability Index
psi = self.calculate_psi(
self.reference_stats['feature_distributions'][i],
X_new[:, i]
)
drift_results['feature_level_drift'][feature_name] = {
'ks_statistic': ks_stat,
'ks_p_value': ks_p_value,
'psi': psi,
'drift_detected': ks_p_value < self.drift_threshold or psi > 0.2
}
return drift_results
def calculate_psi(self, reference: np.ndarray, current: np.ndarray,
bins: int = 10) -> float:
"""Calculate Population Stability Index"""
# Create bins based on reference distribution
bin_edges = np.histogram_bin_edges(reference, bins=bins)
# Calculate distributions
ref_hist, _ = np.histogram(reference, bins=bin_edges)
cur_hist, _ = np.histogram(current, bins=bin_edges)
# Normalize to percentages
ref_pct = ref_hist / len(reference) + 1e-6 # Small epsilon to avoid log(0)
cur_pct = cur_hist / len(current) + 1e-6
# Calculate PSI
psi = np.sum((cur_pct - ref_pct) * np.log(cur_pct / ref_pct))
return psi
class FairnessAnalyzer:
def analyze_fairness(self, X: np.ndarray, y_pred: np.ndarray,
protected_attributes: List[str]) -> Dict:
"""Comprehensive fairness analysis"""
fairness_metrics = {}
for attr in protected_attributes:
attr_index = self.config['feature_names'].index(attr)
protected_groups = np.unique(X[:, attr_index])
group_metrics = {}
for group in protected_groups:
group_mask = X[:, attr_index] == group
group_predictions = y_pred[group_mask]
group_metrics[f'group_{group}'] = {
'size': np.sum(group_mask),
'positive_rate': np.mean(group_predictions == 1),
'prediction_distribution': np.bincount(group_predictions) / len(group_predictions)
}
# Calculate fairness metrics
fairness_metrics[attr] = {
'group_metrics': group_metrics,
'demographic_parity': self.calculate_demographic_parity(group_metrics),
'equalized_odds': self.calculate_equalized_odds(group_metrics),
'disparate_impact': self.calculate_disparate_impact(group_metrics)
}
return fairness_metrics
def calculate_demographic_parity(self, group_metrics: Dict) -> float:
"""Calculate demographic parity difference"""
positive_rates = [metrics['positive_rate'] for metrics in group_metrics.values()]
return max(positive_rates) - min(positive_rates)
# Model Card Generation voor compliance
class ModelCardGenerator:
def generate_model_card(self, model, training_data: Dict,
performance_metrics: Dict, fairness_analysis: Dict) -> Dict:
"""Generate comprehensive model card"""
model_card = {
'model_details': {
'model_type': type(model).__name__,
'model_version': self.config.get('model_version', '1.0'),
'training_date': pd.Timestamp.now().isoformat(),
'intended_use': self.config.get('intended_use', ''),
'out_of_scope_uses': self.config.get('out_of_scope_uses', [])
},
'training_data': {
'dataset_name': training_data.get('dataset_name'),
'dataset_size': training_data.get('dataset_size'),
'feature_statistics': training_data.get('feature_statistics'),
'preprocessing_steps': training_data.get('preprocessing_steps', [])
},
'evaluation_data': training_data.get('evaluation_data', {}),
'quantitative_analysis': {
'performance_metrics': performance_metrics,
'fairness_metrics': fairness_analysis
},
'ethical_considerations': {
'bias_analysis': fairness_analysis,
'environmental_impact': self.config.get('environmental_impact'),
'recommendations': self.config.get('ethical_recommendations', [])
},
'technical_specifications': {
'model_architecture': self.config.get('model_architecture'),
'hardware_requirements': self.config.get('hardware_requirements'),
'software_dependencies': self.config.get('software_dependencies', [])
}
}
return model_card
Attribution Methods
SHAP, LIME, Integrated Gradients en DeepLIFT voor feature importance attribution. Gradient-based explanations voor deep learning models met attention visualization en saliency mapping.
Model Drift Detection
Real-time monitoring van data drift, concept drift en performance degradation. Population Stability Index, Kolmogorov-Smirnov tests en distribution shift detection met automated alerting.
Fairness & Bias Analysis
Comprehensive bias detection met demographic parity, equalized odds en disparate impact analysis. Group fairness metrics en individual fairness assessment voor responsible AI deployment.
Compliance & Governance
GDPR Article 22 compliance, EU AI Act alignment en model cards generation. Audit trails, risk assessment frameworks en governance workflows voor enterprise AI systems.
Platform & Framework Integration
Onze explainable AI oplossingen integreren met leading ML platforms en monitoring tools. Van cloud-native deployment tot on-premises installaties, we ondersteunen enterprise-grade explainability en compliance workflows.
Explainability Libraries
SHAP: TreeExplainer, DeepExplainer
LIME: Tabular, Image, Text explainers
Captum: PyTorch interpretability
InterpretML: Microsoft explainability
Monitoring Platforms
Evidently: ML monitoring dashboards
WhyLabs: Data quality monitoring
Weights & Biases: Experiment tracking
MLflow: Model lifecycle management
Enterprise Integration
Kubernetes: Scalable deployment
Apache Kafka: Real-time monitoring
Grafana: Visualization dashboards
Prometheus: Metrics collection
Compliance Frameworks
Model Cards: Documentation standards
Audit Trails: Decision logging
Risk Assessment: Impact analysis
Governance: Policy enforcement