Generatieve AI & Synthesis

State-of-the-art generatieve modellen voor content creatie, van tekst en beeld tot 3D en audio

← Terug naar overzicht

Generatieve AI Ecosystem

Onze generatieve AI oplossingen omvatten de volledige stack van content creatie: van tekst generatie met Large Language Models tot beeld synthese met Diffusion Models, 3D content generatie en audio synthesis. We implementeren custom architectures, fine-tuning pipelines en controleerbare generatie voor enterprise toepassingen.

Multi-Modal Generative AI Content Creation Pipeline Content Inputs Text Prompts Natural Language Reference Images Style Transfer 3D Models Mesh/Point Cloud Audio Samples Waveform/MIDI Control Vectors LoRA/Embeddings Video Frames Temporal Sequence Code Snippets Programming Logic Multi-Modal Combined Inputs Generative Models Large Language Models LLaMA-2/3 • GPT-4 • Claude • Mistral Fine-tuning • LoRA • QLoRA • RLHF Diffusion Models Stable Diffusion • DALL-E • Midjourney ControlNet • Dreambooth • IP-Adapter 3D Content Generation NeRF • Gaussian Splatting • DMTet Point-E • Shap-E • DreamFusion Audio Synthesis WaveNet • MusicGen • AudioCraft Voice Cloning • Music Generation Video Generation RunwayML • Pika • Stable Video Text-to-Video • Image-to-Video Controllable Generation Conditional Sampling • Guidance Scale Quality Control • Safety Filters Generated Content High-Res Images 4K+ Resolution 3D Assets Game-Ready Meshes Audio Files 48kHz/24-bit Video Content 4K/60fps Text Content Articles/Code Interactive Media VR/AR Content Design Assets Logos/UI Elements Multi-Modal Combined Outputs Quality Metrics: FID: 12.3 LPIPS: 0.08 CLIP: 0.94

Technische Implementatie (voorbeeld)

// Multi-Modal Generative AI Pipeline
import torch
import torch.nn as nn
from transformers import AutoTokenizer, AutoModelForCausalLM
from diffusers import StableDiffusionPipeline, ControlNetModel
from typing import Dict, List, Optional, Union
import numpy as np

class MultiModalGenerativeEngine:
    def __init__(self, config: Dict):
        # Text Generation Models
        self.text_model = AutoModelForCausalLM.from_pretrained(
            config['text_model_path'],
            torch_dtype=torch.float16,
            device_map="auto"
        )
        self.tokenizer = AutoTokenizer.from_pretrained(config['text_model_path'])

        # Image Generation Pipeline
        self.image_pipeline = StableDiffusionPipeline.from_pretrained(
            config['image_model_path'],
            torch_dtype=torch.float16,
            safety_checker=None,
            requires_safety_checker=False
        ).to("cuda")

        # ControlNet voor precision control
        self.controlnet = ControlNetModel.from_pretrained(
            config['controlnet_path'],
            torch_dtype=torch.float16
        )

        # Custom fine-tuned models
        self.lora_adapters = self.load_lora_adapters(config['lora_paths'])
        self.custom_embeddings = self.load_custom_embeddings(config['embedding_paths'])

        # Quality control
        self.safety_filter = SafetyFilter()
        self.quality_scorer = ContentQualityScorer()

    def generate_text(self, prompt: str, max_length: int = 512,
                     temperature: float = 0.7) -> Dict:
        """Generate high-quality text met controllable parameters"""
        # Tokenize input
        inputs = self.tokenizer(prompt, return_tensors="pt").to(self.text_model.device)

        # Generate with custom sampling
        with torch.no_grad():
            outputs = self.text_model.generate(
                inputs.input_ids,
                max_length=max_length,
                temperature=temperature,
                do_sample=True,
                top_p=0.9,
                top_k=50,
                repetition_penalty=1.1,
                pad_token_id=self.tokenizer.eos_token_id
            )

        # Decode generated text
        generated_text = self.tokenizer.decode(
            outputs[0][inputs.input_ids.shape[1]:],
            skip_special_tokens=True
        )

        # Quality scoring
        quality_score = self.quality_scorer.score_text(generated_text)

        return {
            'text': generated_text,
            'quality_score': quality_score,
            'perplexity': self.calculate_perplexity(generated_text),
            'tokens_generated': len(outputs[0]) - inputs.input_ids.shape[1]
        }

    def generate_image(self, prompt: str, negative_prompt: str = "",
                      guidance_scale: float = 7.5, num_inference_steps: int = 50,
                      control_image: Optional[np.ndarray] = None) -> Dict:
        """Generate high-quality images met precision control"""
        # Apply LoRA adapters als gespecificeerd
        if hasattr(self.image_pipeline.unet, 'set_adapters'):
            self.image_pipeline.unet.set_adapters(['style_adapter'])

        # ControlNet conditioning
        if control_image is not None:
            control_image = self.preprocess_control_image(control_image)

        # Generate image
        with torch.autocast("cuda"):
            result = self.image_pipeline(
                prompt=prompt,
                negative_prompt=negative_prompt,
                num_inference_steps=num_inference_steps,
                guidance_scale=guidance_scale,
                image=control_image if control_image is not None else None,
                controlnet_conditioning_scale=1.0,
                generator=torch.Generator("cuda").manual_seed(42)
            )

        image = result.images[0]

        # Quality assessment
        quality_metrics = self.assess_image_quality(image, prompt)

        # Safety filtering
        safety_result = self.safety_filter.check_image(image)

        return {
            'image': image,
            'quality_metrics': quality_metrics,
            'safety_passed': safety_result['safe'],
            'generation_time': result.latents.shape[0] * num_inference_steps
        }

# Advanced LoRA Fine-tuning System
class LoRAFineTuningSystem:
    def __init__(self, base_model: nn.Module, config: Dict):
        self.base_model = base_model
        self.lora_config = config
        self.lora_layers = {}

        # Initialize LoRA layers
        self.initialize_lora_layers()

    def initialize_lora_layers(self):
        """Initialize LoRA adaptation layers"""
        for name, module in self.base_model.named_modules():
            if isinstance(module, (nn.Linear, nn.Conv2d)):
                if any(target in name for target in self.lora_config['target_modules']):
                    lora_layer = LoRALayer(
                        in_features=module.in_features if hasattr(module, 'in_features') else module.in_channels,
                        out_features=module.out_features if hasattr(module, 'out_features') else module.out_channels,
                        rank=self.lora_config['rank'],
                        alpha=self.lora_config['alpha'],
                        dropout=self.lora_config['dropout']
                    )
                    self.lora_layers[name] = lora_layer

    def fine_tune(self, dataset: torch.utils.data.Dataset,
                 num_epochs: int = 3, learning_rate: float = 1e-4):
        """Fine-tune model met LoRA adapters"""
        # Setup optimizer alleen voor LoRA parameters
        lora_params = []
        for lora_layer in self.lora_layers.values():
            lora_params.extend(list(lora_layer.parameters()))

        optimizer = torch.optim.AdamW(lora_params, lr=learning_rate)
        scheduler = torch.optim.lr_scheduler.CosineAnnealingLR(
            optimizer, T_max=num_epochs
        )

        dataloader = torch.utils.data.DataLoader(
            dataset, batch_size=self.lora_config['batch_size'], shuffle=True
        )

        # Training loop
        for epoch in range(num_epochs):
            total_loss = 0
            for batch_idx, batch in enumerate(dataloader):
                optimizer.zero_grad()

                # Forward pass met LoRA adaptation
                outputs = self.forward_with_lora(batch['input_ids'])
                loss = self.compute_loss(outputs, batch['labels'])

                loss.backward()
                torch.nn.utils.clip_grad_norm_(lora_params, max_norm=1.0)
                optimizer.step()

                total_loss += loss.item()

            avg_loss = total_loss / len(dataloader)
            print(f"Epoch {epoch+1}/{num_epochs}, Loss: {avg_loss:.4f}")

            scheduler.step()

        return {
            'final_loss': avg_loss,
            'lora_weights': {name: layer.state_dict()
                           for name, layer in self.lora_layers.items()}
        }

class LoRALayer(nn.Module):
    def __init__(self, in_features: int, out_features: int,
                 rank: int = 16, alpha: float = 16, dropout: float = 0.1):
        super().__init__()
        self.rank = rank
        self.alpha = alpha

        # LoRA matrices
        self.lora_A = nn.Linear(in_features, rank, bias=False)
        self.lora_B = nn.Linear(rank, out_features, bias=False)
        self.dropout = nn.Dropout(dropout)
        self.scaling = alpha / rank

        # Initialize weights
        nn.init.kaiming_uniform_(self.lora_A.weight, a=np.sqrt(5))
        nn.init.zeros_(self.lora_B.weight)

    def forward(self, x: torch.Tensor) -> torch.Tensor:
        return self.lora_B(self.dropout(self.lora_A(x))) * self.scaling

# Content Quality Assessment System
class ContentQualityScorer:
    def __init__(self):
        # Pre-trained quality assessment models
        self.clip_model = self.load_clip_model()
        self.aesthetic_scorer = self.load_aesthetic_model()
        self.text_quality_model = self.load_text_quality_model()

    def score_image(self, image: np.ndarray, prompt: str) -> Dict:
        """Comprehensive image quality assessment"""
        # Technical quality metrics
        sharpness = self.calculate_sharpness(image)
        contrast = self.calculate_contrast(image)
        color_balance = self.calculate_color_balance(image)

        # Semantic quality (CLIP score)
        clip_score = self.calculate_clip_score(image, prompt)

        # Aesthetic quality
        aesthetic_score = self.aesthetic_scorer.predict(image)

        # Artifact detection
        artifacts = self.detect_artifacts(image)

        return {
            'technical_quality': {
                'sharpness': sharpness,
                'contrast': contrast,
                'color_balance': color_balance
            },
            'semantic_alignment': clip_score,
            'aesthetic_score': aesthetic_score,
            'artifacts_detected': artifacts,
            'overall_score': self.compute_overall_score(
                sharpness, contrast, clip_score, aesthetic_score, artifacts
            )
        }

    def score_text(self, text: str) -> Dict:
        """Comprehensive text quality assessment"""
        # Linguistic quality
        grammar_score = self.assess_grammar(text)
        coherence_score = self.assess_coherence(text)
        fluency_score = self.assess_fluency(text)

        # Content quality
        informativeness = self.assess_informativeness(text)
        creativity_score = self.assess_creativity(text)

        # Safety checks
        toxicity_score = self.assess_toxicity(text)
        bias_score = self.assess_bias(text)

        return {
            'linguistic_quality': {
                'grammar': grammar_score,
                'coherence': coherence_score,
                'fluency': fluency_score
            },
            'content_quality': {
                'informativeness': informativeness,
                'creativity': creativity_score
            },
            'safety_scores': {
                'toxicity': toxicity_score,
                'bias': bias_score
            },
            'overall_score': self.compute_text_overall_score(
                grammar_score, coherence_score, informativeness, toxicity_score
            )
        }

Large Language Models

LLaMA-2/3, GPT-4, Claude en Mistral implementaties met custom fine-tuning. LoRA/QLoRA adapters voor domain-specific toepassingen. RLHF alignment en instruction following optimization.

Diffusion Models

Stable Diffusion met ControlNet voor precision control. Dreambooth training voor custom concepts. IP-Adapter voor style transfer en consistent character generation.

3D Content Generation

NeRF en Gaussian Splatting voor 3D scene reconstruction. Point-E/Shap-E voor 3D asset generation. DreamFusion voor text-to-3D synthesis met game-ready output.

Audio & Music Synthesis

WaveNet en MusicGen voor high-fidelity audio generation. Voice cloning met speaker adaptation. Procedural music generation voor interactive media en games.

Platform & Model Integration

Onze generatieve AI oplossingen integreren met leading model providers en frameworks. Van open-source modellen tot commercial APIs, we optimaliseren voor performance, cost-efficiency en quality consistency.

Model Frameworks

HuggingFace: Transformers, Diffusers
OpenAI: GPT-4, DALL-E 3 API
Anthropic: Claude 3 integration
Stability AI: Stable Diffusion variants

Training Infrastructure

GPU Clusters: A100, H100 multi-node
DeepSpeed: Memory optimization
FairScale: Model parallelism
Weights & Biases: Experiment tracking

Deployment Platforms

NVIDIA Triton: Model serving
TensorRT: Inference optimization
ONNX Runtime: Cross-platform deployment
Modal/RunPod: Serverless inference

Quality & Safety

Content Moderation: NSFW detection
Bias Detection: Fairness metrics
Watermarking: AI-generated content tracking
Version Control: Model lineage tracking