Generatieve AI Ecosystem
Onze generatieve AI oplossingen omvatten de volledige stack van content creatie: van tekst generatie met Large Language Models tot beeld synthese met Diffusion Models, 3D content generatie en audio synthesis. We implementeren custom architectures, fine-tuning pipelines en controleerbare generatie voor enterprise toepassingen.
Technische Implementatie (voorbeeld)
// Multi-Modal Generative AI Pipeline
import torch
import torch.nn as nn
from transformers import AutoTokenizer, AutoModelForCausalLM
from diffusers import StableDiffusionPipeline, ControlNetModel
from typing import Dict, List, Optional, Union
import numpy as np
class MultiModalGenerativeEngine:
def __init__(self, config: Dict):
# Text Generation Models
self.text_model = AutoModelForCausalLM.from_pretrained(
config['text_model_path'],
torch_dtype=torch.float16,
device_map="auto"
)
self.tokenizer = AutoTokenizer.from_pretrained(config['text_model_path'])
# Image Generation Pipeline
self.image_pipeline = StableDiffusionPipeline.from_pretrained(
config['image_model_path'],
torch_dtype=torch.float16,
safety_checker=None,
requires_safety_checker=False
).to("cuda")
# ControlNet voor precision control
self.controlnet = ControlNetModel.from_pretrained(
config['controlnet_path'],
torch_dtype=torch.float16
)
# Custom fine-tuned models
self.lora_adapters = self.load_lora_adapters(config['lora_paths'])
self.custom_embeddings = self.load_custom_embeddings(config['embedding_paths'])
# Quality control
self.safety_filter = SafetyFilter()
self.quality_scorer = ContentQualityScorer()
def generate_text(self, prompt: str, max_length: int = 512,
temperature: float = 0.7) -> Dict:
"""Generate high-quality text met controllable parameters"""
# Tokenize input
inputs = self.tokenizer(prompt, return_tensors="pt").to(self.text_model.device)
# Generate with custom sampling
with torch.no_grad():
outputs = self.text_model.generate(
inputs.input_ids,
max_length=max_length,
temperature=temperature,
do_sample=True,
top_p=0.9,
top_k=50,
repetition_penalty=1.1,
pad_token_id=self.tokenizer.eos_token_id
)
# Decode generated text
generated_text = self.tokenizer.decode(
outputs[0][inputs.input_ids.shape[1]:],
skip_special_tokens=True
)
# Quality scoring
quality_score = self.quality_scorer.score_text(generated_text)
return {
'text': generated_text,
'quality_score': quality_score,
'perplexity': self.calculate_perplexity(generated_text),
'tokens_generated': len(outputs[0]) - inputs.input_ids.shape[1]
}
def generate_image(self, prompt: str, negative_prompt: str = "",
guidance_scale: float = 7.5, num_inference_steps: int = 50,
control_image: Optional[np.ndarray] = None) -> Dict:
"""Generate high-quality images met precision control"""
# Apply LoRA adapters als gespecificeerd
if hasattr(self.image_pipeline.unet, 'set_adapters'):
self.image_pipeline.unet.set_adapters(['style_adapter'])
# ControlNet conditioning
if control_image is not None:
control_image = self.preprocess_control_image(control_image)
# Generate image
with torch.autocast("cuda"):
result = self.image_pipeline(
prompt=prompt,
negative_prompt=negative_prompt,
num_inference_steps=num_inference_steps,
guidance_scale=guidance_scale,
image=control_image if control_image is not None else None,
controlnet_conditioning_scale=1.0,
generator=torch.Generator("cuda").manual_seed(42)
)
image = result.images[0]
# Quality assessment
quality_metrics = self.assess_image_quality(image, prompt)
# Safety filtering
safety_result = self.safety_filter.check_image(image)
return {
'image': image,
'quality_metrics': quality_metrics,
'safety_passed': safety_result['safe'],
'generation_time': result.latents.shape[0] * num_inference_steps
}
# Advanced LoRA Fine-tuning System
class LoRAFineTuningSystem:
def __init__(self, base_model: nn.Module, config: Dict):
self.base_model = base_model
self.lora_config = config
self.lora_layers = {}
# Initialize LoRA layers
self.initialize_lora_layers()
def initialize_lora_layers(self):
"""Initialize LoRA adaptation layers"""
for name, module in self.base_model.named_modules():
if isinstance(module, (nn.Linear, nn.Conv2d)):
if any(target in name for target in self.lora_config['target_modules']):
lora_layer = LoRALayer(
in_features=module.in_features if hasattr(module, 'in_features') else module.in_channels,
out_features=module.out_features if hasattr(module, 'out_features') else module.out_channels,
rank=self.lora_config['rank'],
alpha=self.lora_config['alpha'],
dropout=self.lora_config['dropout']
)
self.lora_layers[name] = lora_layer
def fine_tune(self, dataset: torch.utils.data.Dataset,
num_epochs: int = 3, learning_rate: float = 1e-4):
"""Fine-tune model met LoRA adapters"""
# Setup optimizer alleen voor LoRA parameters
lora_params = []
for lora_layer in self.lora_layers.values():
lora_params.extend(list(lora_layer.parameters()))
optimizer = torch.optim.AdamW(lora_params, lr=learning_rate)
scheduler = torch.optim.lr_scheduler.CosineAnnealingLR(
optimizer, T_max=num_epochs
)
dataloader = torch.utils.data.DataLoader(
dataset, batch_size=self.lora_config['batch_size'], shuffle=True
)
# Training loop
for epoch in range(num_epochs):
total_loss = 0
for batch_idx, batch in enumerate(dataloader):
optimizer.zero_grad()
# Forward pass met LoRA adaptation
outputs = self.forward_with_lora(batch['input_ids'])
loss = self.compute_loss(outputs, batch['labels'])
loss.backward()
torch.nn.utils.clip_grad_norm_(lora_params, max_norm=1.0)
optimizer.step()
total_loss += loss.item()
avg_loss = total_loss / len(dataloader)
print(f"Epoch {epoch+1}/{num_epochs}, Loss: {avg_loss:.4f}")
scheduler.step()
return {
'final_loss': avg_loss,
'lora_weights': {name: layer.state_dict()
for name, layer in self.lora_layers.items()}
}
class LoRALayer(nn.Module):
def __init__(self, in_features: int, out_features: int,
rank: int = 16, alpha: float = 16, dropout: float = 0.1):
super().__init__()
self.rank = rank
self.alpha = alpha
# LoRA matrices
self.lora_A = nn.Linear(in_features, rank, bias=False)
self.lora_B = nn.Linear(rank, out_features, bias=False)
self.dropout = nn.Dropout(dropout)
self.scaling = alpha / rank
# Initialize weights
nn.init.kaiming_uniform_(self.lora_A.weight, a=np.sqrt(5))
nn.init.zeros_(self.lora_B.weight)
def forward(self, x: torch.Tensor) -> torch.Tensor:
return self.lora_B(self.dropout(self.lora_A(x))) * self.scaling
# Content Quality Assessment System
class ContentQualityScorer:
def __init__(self):
# Pre-trained quality assessment models
self.clip_model = self.load_clip_model()
self.aesthetic_scorer = self.load_aesthetic_model()
self.text_quality_model = self.load_text_quality_model()
def score_image(self, image: np.ndarray, prompt: str) -> Dict:
"""Comprehensive image quality assessment"""
# Technical quality metrics
sharpness = self.calculate_sharpness(image)
contrast = self.calculate_contrast(image)
color_balance = self.calculate_color_balance(image)
# Semantic quality (CLIP score)
clip_score = self.calculate_clip_score(image, prompt)
# Aesthetic quality
aesthetic_score = self.aesthetic_scorer.predict(image)
# Artifact detection
artifacts = self.detect_artifacts(image)
return {
'technical_quality': {
'sharpness': sharpness,
'contrast': contrast,
'color_balance': color_balance
},
'semantic_alignment': clip_score,
'aesthetic_score': aesthetic_score,
'artifacts_detected': artifacts,
'overall_score': self.compute_overall_score(
sharpness, contrast, clip_score, aesthetic_score, artifacts
)
}
def score_text(self, text: str) -> Dict:
"""Comprehensive text quality assessment"""
# Linguistic quality
grammar_score = self.assess_grammar(text)
coherence_score = self.assess_coherence(text)
fluency_score = self.assess_fluency(text)
# Content quality
informativeness = self.assess_informativeness(text)
creativity_score = self.assess_creativity(text)
# Safety checks
toxicity_score = self.assess_toxicity(text)
bias_score = self.assess_bias(text)
return {
'linguistic_quality': {
'grammar': grammar_score,
'coherence': coherence_score,
'fluency': fluency_score
},
'content_quality': {
'informativeness': informativeness,
'creativity': creativity_score
},
'safety_scores': {
'toxicity': toxicity_score,
'bias': bias_score
},
'overall_score': self.compute_text_overall_score(
grammar_score, coherence_score, informativeness, toxicity_score
)
}
Large Language Models
LLaMA-2/3, GPT-4, Claude en Mistral implementaties met custom fine-tuning. LoRA/QLoRA adapters voor domain-specific toepassingen. RLHF alignment en instruction following optimization.
Diffusion Models
Stable Diffusion met ControlNet voor precision control. Dreambooth training voor custom concepts. IP-Adapter voor style transfer en consistent character generation.
3D Content Generation
NeRF en Gaussian Splatting voor 3D scene reconstruction. Point-E/Shap-E voor 3D asset generation. DreamFusion voor text-to-3D synthesis met game-ready output.
Audio & Music Synthesis
WaveNet en MusicGen voor high-fidelity audio generation. Voice cloning met speaker adaptation. Procedural music generation voor interactive media en games.
Platform & Model Integration
Onze generatieve AI oplossingen integreren met leading model providers en frameworks. Van open-source modellen tot commercial APIs, we optimaliseren voor performance, cost-efficiency en quality consistency.
Model Frameworks
HuggingFace: Transformers, Diffusers
OpenAI: GPT-4, DALL-E 3 API
Anthropic: Claude 3 integration
Stability AI: Stable Diffusion variants
Training Infrastructure
GPU Clusters: A100, H100 multi-node
DeepSpeed: Memory optimization
FairScale: Model parallelism
Weights & Biases: Experiment tracking
Deployment Platforms
NVIDIA Triton: Model serving
TensorRT: Inference optimization
ONNX Runtime: Cross-platform deployment
Modal/RunPod: Serverless inference
Quality & Safety
Content Moderation: NSFW detection
Bias Detection: Fairness metrics
Watermarking: AI-generated content tracking
Version Control: Model lineage tracking