Intelligent Input Multiplexing Systeem
Onze AI-powered HMI oplossingen combineren geavanceerde input processing met machine learning voor adaptieve gebruikersinterfaces. We specialiseren ons in predictive input routing, biometric authentication, context-aware interfaces en real-time gesture recognition voor complexe industriële en autonome systemen.
Technische Implementatie (voorbeeld)
// AI-Powered Input Multiplexing System
import asyncio
import numpy as np
from typing import Dict, List, Optional, Tuple
from collections import deque
from dataclasses import dataclass
from enum import Enum
@dataclass
class InputEvent:
device_id: str
event_type: str
data: Dict
timestamp: float
confidence: float
priority: int
class InputModalityType(Enum):
GESTURE = "gesture"
GAZE = "gaze"
VOICE = "voice"
TOUCH = "touch"
BIOMETRIC = "biometric"
TRADITIONAL = "traditional"
BCI = "brain_computer"
class IntelligentInputMultiplexer:
def __init__(self, config: Dict):
# Input processors voor verschillende modaliteiten
self.gesture_processor = GestureRecognitionProcessor()
self.gaze_tracker = EyeTrackingProcessor()
self.voice_processor = VoiceCommandProcessor()
self.biometric_processor = BiometricAuthProcessor()
# AI modules
self.context_analyzer = ContextAnalysisEngine()
self.intent_recognizer = IntentRecognitionModel()
self.predictive_router = PredictiveRoutingEngine()
# Real-time processing
self.input_queue = asyncio.Queue(maxsize=1000)
self.event_buffer = deque(maxlen=50)
self.active_sessions = {}
# Learning en adaptation
self.user_profile = UserProfileManager()
self.adaptation_engine = AdaptationEngine()
async def process_input_stream(self):
"""Main input processing loop"""
while True:
try:
# Get next input event
event = await self.input_queue.get()
# Context analysis
context = await self.analyze_context(event)
# Intent recognition met multi-modal fusion
intent = await self.recognize_intent(event, context)
# Predictive routing en priority assignment
routing_decision = await self.route_input(event, intent, context)
# Execute input action
await self.execute_input_action(routing_decision)
# Update learning models
await self.update_learning_models(event, intent, routing_decision)
self.event_buffer.append(event)
except Exception as e:
await self.handle_error(e, event)
async def analyze_context(self, event: InputEvent) -> Dict:
"""Analyze current context voor intelligent input processing"""
context = {
'user_state': await self.get_user_state(),
'system_state': await self.get_system_state(),
'environmental_factors': await self.get_environmental_context(),
'task_context': await self.get_current_task_context(),
'temporal_patterns': self.analyze_temporal_patterns()
}
# AI-based context enrichment
enriched_context = await self.context_analyzer.enrich(context, event)
return enriched_context
async def recognize_intent(self, event: InputEvent, context: Dict) -> Dict:
"""Multi-modal intent recognition met confidence scoring"""
# Extract features per modaliteit
gesture_features = self.gesture_processor.extract_features(event)
gaze_features = self.gaze_tracker.extract_features(event)
voice_features = self.voice_processor.extract_features(event)
# Fusion van multi-modal features
fused_features = self.fuse_multimodal_features(
gesture_features, gaze_features, voice_features, context
)
# Intent classification
intent_distribution = await self.intent_recognizer.predict(
fused_features, context
)
# Confidence-based filtering
filtered_intents = self.filter_by_confidence(
intent_distribution, threshold=0.7
)
return {
'primary_intent': filtered_intents[0] if filtered_intents else None,
'alternative_intents': filtered_intents[1:3],
'confidence_scores': intent_distribution,
'ambiguity_score': self.calculate_ambiguity(intent_distribution)
}
# Advanced Gesture Recognition System
class GestureRecognitionProcessor:
def __init__(self):
# Multi-camera hand tracking
self.hand_tracker = MediaPipeHandTracker()
self.pose_estimator = PoseEstimationModel()
# Temporal gesture recognition
self.gesture_classifier = TemporalGestureClassifier()
self.gesture_buffer = TemporalBuffer(size=30) # 1 second at 30fps
# Custom gesture learning
self.custom_gesture_learner = OneShotGestureLearner()
def process_frame(self, frame: np.ndarray, timestamp: float) -> Dict:
# Hand landmark detection
hand_landmarks = self.hand_tracker.process(frame)
if hand_landmarks:
# Feature extraction
features = self.extract_gesture_features(hand_landmarks)
# Temporal buffering
self.gesture_buffer.add(features, timestamp)
# Gesture classification als we genoeg frames hebben
if len(self.gesture_buffer) >= self.min_sequence_length:
gesture_prediction = self.gesture_classifier.predict(
self.gesture_buffer.get_sequence()
)
return {
'gesture_class': gesture_prediction['class'],
'confidence': gesture_prediction['confidence'],
'hand_landmarks': hand_landmarks,
'gesture_velocity': self.calculate_gesture_velocity(),
'gesture_start_time': gesture_prediction['start_time'],
'gesture_duration': gesture_prediction['duration']
}
return {'gesture_class': None, 'confidence': 0.0}
def extract_gesture_features(self, landmarks: np.ndarray) -> np.ndarray:
"""Extract meaningful features voor gesture recognition"""
# Normalize landmarks relative to hand center
hand_center = np.mean(landmarks, axis=0)
normalized_landmarks = landmarks - hand_center
# Calculate relative distances en angles
finger_angles = self.calculate_finger_angles(normalized_landmarks)
palm_orientation = self.calculate_palm_orientation(normalized_landmarks)
finger_extensions = self.calculate_finger_extensions(normalized_landmarks)
# Temporal features (velocity, acceleration)
if len(self.gesture_buffer) > 0:
velocity = self.calculate_velocity(landmarks)
acceleration = self.calculate_acceleration(landmarks)
else:
velocity = np.zeros_like(landmarks)
acceleration = np.zeros_like(landmarks)
# Combine all features
features = np.concatenate([
normalized_landmarks.flatten(),
finger_angles,
palm_orientation,
finger_extensions,
velocity.flatten(),
acceleration.flatten()
])
return features
# Biometric Authentication & User State Monitoring
class BiometricAuthProcessor:
def __init__(self):
# Multi-modal biometrics
self.face_recognizer = FaceRecognitionModel()
self.voice_authenticator = VoiceAuthenticationModel()
self.heart_rate_monitor = HeartRateMonitor()
self.stress_detector = StressDetectionModel()
# Continuous authentication
self.auth_confidence_tracker = ContinuousAuthTracker()
self.anomaly_detector = UserBehaviorAnomalyDetector()
async def authenticate_user(self, biometric_data: Dict) -> Dict:
"""Multi-modal biometric authentication"""
auth_results = {}
# Face recognition
if 'face_image' in biometric_data:
face_result = await self.face_recognizer.authenticate(
biometric_data['face_image']
)
auth_results['face'] = face_result
# Voice authentication
if 'voice_sample' in biometric_data:
voice_result = await self.voice_authenticator.authenticate(
biometric_data['voice_sample']
)
auth_results['voice'] = voice_result
# Behavioral biometrics
if 'interaction_pattern' in biometric_data:
behavior_score = self.analyze_interaction_pattern(
biometric_data['interaction_pattern']
)
auth_results['behavior'] = behavior_score
# Fusion van authentication scores
combined_confidence = self.fuse_auth_scores(auth_results)
# Continuous authentication update
self.auth_confidence_tracker.update(combined_confidence)
return {
'authenticated': combined_confidence > self.auth_threshold,
'confidence': combined_confidence,
'auth_methods': auth_results,
'continuous_confidence': self.auth_confidence_tracker.get_confidence(),
'anomaly_detected': self.anomaly_detector.check_anomaly(biometric_data)
}
def monitor_user_state(self, sensor_data: Dict) -> Dict:
"""Continuous user state monitoring voor adaptive interfaces"""
user_state = {
'stress_level': self.stress_detector.predict(sensor_data),
'attention_level': self.calculate_attention_level(sensor_data),
'fatigue_level': self.calculate_fatigue_level(sensor_data),
'cognitive_load': self.estimate_cognitive_load(sensor_data)
}
# Adaptive interface recommendations
adaptations = self.recommend_interface_adaptations(user_state)
return {
'user_state': user_state,
'recommended_adaptations': adaptations,
'intervention_needed': self.check_intervention_needed(user_state)
}
Gesture Recognition
MediaPipe-based hand tracking met custom gesture learning. Real-time herkenning van complexe hand- en armgebaren met sub-centimeter accuracy. Ondersteunt one-shot learning voor gebruiker-specifieke gebaren.
Eye Tracking & Gaze
High-precision gaze tracking voor attention-based interfaces. Pupil diameter monitoring voor cognitive load assessment. Integratie met Tobii, SR Research en andere eye tracking platforms.
Biometric Fusion
Multi-modal biometric authentication met face recognition, voice prints en behavioral patterns. Continuous authentication met anomaly detection voor security-critical applicaties.
Context-Aware Interfaces
AI-driven interface adaptation gebaseerd op user state, task context en environmental factors. Real-time personalisatie met accessibility features en cognitive load optimization.
Platform & Hardware Integratie
Onze HMI oplossingen integreren met diverse hardware platforms en input devices. Van low-level Raw Input API's tot high-level gesture recognition frameworks, we ondersteunen cross-platform deployment met real-time performance guarantees.
Low-Level Input APIs
Windows: Raw Input API, DirectInput
Linux: evdev, udev, libinput
macOS: IOKit HID, Carbon Events
Real-time: RTOS integration, deterministic latency
Gesture & Tracking Hardware
Vision: Intel RealSense, Leap Motion
Eye Tracking: Tobii, SR Research
IMU Sensors: MPU-9250, LSM9DS1
LiDAR: Velodyne, Ouster, Hesai
Communication Protocols
Real-time: EtherCAT, CAN-FD, TSN
Wireless: Wi-Fi 6E, 5G, LoRaWAN
WebRTC: Browser-based interfaces
OSC/MIDI: Creative applications
AI Acceleration
NVIDIA: Jetson, TensorRT, CUDA
Intel: OpenVINO, Neural Compute Stick
Qualcomm: Snapdragon NPU
Edge TPU: Google Coral, MediaTek