Enterprise MLOps Platform
Onze MLOps oplossingen bieden end-to-end machine learning lifecycle management met Kubernetes-native pipelines, automated model deployment, A/B testing frameworks en enterprise governance. We specialiseren ons in hybrid cloud-edge deployment, model versioning en continuous integration voor production AI systems.
Technische Implementatie (voorbeeld)
// Enterprise MLOps Pipeline Implementation
import kubeflow
import mlflow
import kubernetes
from typing import Dict, List, Optional, Any
from dataclasses import dataclass
import yaml
@dataclass
class MLOpsConfig:
cluster_name: str
namespace: str
registry_url: str
monitoring_enabled: bool = True
auto_scaling: bool = True
security_enabled: bool = True
class EnterpriseMLOpsPlatform:
def __init__(self, config: MLOpsConfig):
self.config = config
# Initialize Kubernetes client
self.k8s_client = kubernetes.client.ApiClient()
self.apps_v1 = kubernetes.client.AppsV1Api()
self.core_v1 = kubernetes.client.CoreV1Api()
# MLflow client voor model management
self.mlflow_client = mlflow.tracking.MlflowClient()
# Kubeflow pipelines client
self.kfp_client = kubeflow.pipelines.Client()
# Model registry en deployment tracker
self.model_registry = ModelRegistry()
self.deployment_tracker = DeploymentTracker()
def create_training_pipeline(self, pipeline_config: Dict) -> str:
"""Create en deploy een Kubeflow training pipeline"""
@kubeflow.dsl.pipeline(
name=pipeline_config['name'],
description=pipeline_config['description']
)
def ml_training_pipeline(
data_path: str,
model_type: str,
hyperparameters: Dict
):
# Data validation step
data_validation = self.create_data_validation_op(data_path)
# Data preprocessing
preprocessing = self.create_preprocessing_op(
data_validation.outputs['validated_data']
)
# Feature engineering
feature_engineering = self.create_feature_engineering_op(
preprocessing.outputs['processed_data']
)
# Model training met distributed computing
training = self.create_distributed_training_op(
data=feature_engineering.outputs['features'],
model_type=model_type,
hyperparameters=hyperparameters,
gpu_count=pipeline_config.get('gpu_count', 4)
)
# Model validation
validation = self.create_model_validation_op(
training.outputs['model'],
feature_engineering.outputs['test_data']
)
# Model registration
registration = self.create_model_registration_op(
training.outputs['model'],
validation.outputs['metrics']
)
return registration.outputs['model_version']
# Compile en upload pipeline
pipeline_package = kubeflow.dsl.compiler.Compiler().compile(
ml_training_pipeline,
f"{pipeline_config['name']}.yaml"
)
# Create pipeline run
experiment = self.kfp_client.create_experiment(
name=pipeline_config['experiment_name']
)
run = self.kfp_client.run_pipeline(
experiment_id=experiment.id,
job_name=f"{pipeline_config['name']}-{int(time.time())}",
pipeline_package_path=pipeline_package,
params=pipeline_config.get('parameters', {})
)
return run.id
def deploy_model(self, model_version: str, deployment_config: Dict) -> Dict:
"""Deploy model naar Kubernetes met auto-scaling en monitoring"""
# Get model artifacts from registry
model_info = self.model_registry.get_model(model_version)
# Create deployment manifest
deployment_manifest = self.create_deployment_manifest(
model_info, deployment_config
)
# Apply deployment
deployment = self.apps_v1.create_namespaced_deployment(
namespace=self.config.namespace,
body=deployment_manifest
)
# Create service
service_manifest = self.create_service_manifest(deployment_config)
service = self.core_v1.create_namespaced_service(
namespace=self.config.namespace,
body=service_manifest
)
# Setup horizontal pod autoscaler
if self.config.auto_scaling:
hpa_manifest = self.create_hpa_manifest(deployment_config)
self.create_hpa(hpa_manifest)
# Setup monitoring
if self.config.monitoring_enabled:
self.setup_model_monitoring(model_version, deployment_config)
# Register deployment
deployment_info = {
'model_version': model_version,
'deployment_name': deployment.metadata.name,
'service_name': service.metadata.name,
'namespace': self.config.namespace,
'endpoints': self.get_service_endpoints(service),
'status': 'deployed',
'deployment_time': datetime.utcnow().isoformat()
}
self.deployment_tracker.register_deployment(deployment_info)
return deployment_info
def create_deployment_manifest(self, model_info: Dict, config: Dict) -> Dict:
"""Create Kubernetes deployment manifest voor model serving"""
return {
'apiVersion': 'apps/v1',
'kind': 'Deployment',
'metadata': {
'name': f"model-{model_info['name']}-{model_info['version']}",
'labels': {
'app': 'ml-model',
'model': model_info['name'],
'version': model_info['version']
}
},
'spec': {
'replicas': config.get('replicas', 3),
'selector': {
'matchLabels': {
'app': 'ml-model',
'model': model_info['name']
}
},
'template': {
'metadata': {
'labels': {
'app': 'ml-model',
'model': model_info['name'],
'version': model_info['version']
}
},
'spec': {
'containers': [{
'name': 'model-server',
'image': f"{self.config.registry_url}/model-server:{model_info['version']}",
'ports': [{
'containerPort': 8080,
'name': 'http'
}],
'env': [
{'name': 'MODEL_NAME', 'value': model_info['name']},
{'name': 'MODEL_VERSION', 'value': model_info['version']},
{'name': 'MODEL_PATH', 'value': model_info['artifact_path']}
],
'resources': {
'requests': {
'cpu': config.get('cpu_request', '500m'),
'memory': config.get('memory_request', '1Gi')
},
'limits': {
'cpu': config.get('cpu_limit', '2'),
'memory': config.get('memory_limit', '4Gi'),
'nvidia.com/gpu': config.get('gpu_limit', 0)
}
},
'livenessProbe': {
'httpGet': {
'path': '/health',
'port': 8080
},
'initialDelaySeconds': 30,
'periodSeconds': 10
},
'readinessProbe': {
'httpGet': {
'path': '/ready',
'port': 8080
},
'initialDelaySeconds': 5,
'periodSeconds': 5
}
}]
}
}
}
}
# A/B Testing Framework voor model deployment
class ABTestingFramework:
def __init__(self, mlops_platform: EnterpriseMLOpsPlatform):
self.mlops = mlops_platform
self.test_tracker = ABTestTracker()
def create_ab_test(self, test_config: Dict) -> str:
"""Setup A/B test tussen model versies"""
# Deploy control model (baseline)
control_deployment = self.mlops.deploy_model(
test_config['control_model_version'],
{
**test_config['deployment_config'],
'replicas': test_config['control_traffic_percentage'] // 10
}
)
# Deploy treatment model (challenger)
treatment_deployment = self.mlops.deploy_model(
test_config['treatment_model_version'],
{
**test_config['deployment_config'],
'replicas': test_config['treatment_traffic_percentage'] // 10
}
)
# Setup traffic splitting met Istio
virtual_service = self.create_traffic_splitting_config(
control_deployment, treatment_deployment, test_config
)
# Register A/B test
ab_test = {
'test_id': f"ab-test-{int(time.time())}",
'control_model': test_config['control_model_version'],
'treatment_model': test_config['treatment_model_version'],
'traffic_split': {
'control': test_config['control_traffic_percentage'],
'treatment': test_config['treatment_traffic_percentage']
},
'success_metrics': test_config['success_metrics'],
'duration_days': test_config['duration_days'],
'start_time': datetime.utcnow().isoformat(),
'status': 'running'
}
self.test_tracker.register_test(ab_test)
# Setup monitoring voor A/B test metrics
self.setup_ab_test_monitoring(ab_test)
return ab_test['test_id']
def analyze_ab_test_results(self, test_id: str) -> Dict:
"""Analyze A/B test results en statistical significance"""
test_info = self.test_tracker.get_test(test_id)
# Collect metrics for both variants
control_metrics = self.collect_variant_metrics(
test_info['control_model'], test_info['start_time']
)
treatment_metrics = self.collect_variant_metrics(
test_info['treatment_model'], test_info['start_time']
)
# Statistical analysis
results = {}
for metric in test_info['success_metrics']:
control_values = control_metrics[metric]
treatment_values = treatment_metrics[metric]
# T-test voor statistical significance
from scipy import stats
t_stat, p_value = stats.ttest_ind(control_values, treatment_values)
# Effect size (Cohen's d)
pooled_std = np.sqrt(((len(control_values) - 1) * np.var(control_values) +
(len(treatment_values) - 1) * np.var(treatment_values)) /
(len(control_values) + len(treatment_values) - 2))
cohens_d = (np.mean(treatment_values) - np.mean(control_values)) / pooled_std
results[metric] = {
'control_mean': np.mean(control_values),
'treatment_mean': np.mean(treatment_values),
'lift': (np.mean(treatment_values) - np.mean(control_values)) / np.mean(control_values),
'p_value': p_value,
'significant': p_value < 0.05,
'effect_size': cohens_d,
'confidence_interval': self.calculate_confidence_interval(
control_values, treatment_values
)
}
# Overall recommendation
recommendation = self.generate_recommendation(results, test_info)
return {
'test_id': test_id,
'results': results,
'recommendation': recommendation,
'analysis_time': datetime.utcnow().isoformat()
}
# Model Monitoring en Drift Detection
class ModelMonitoringSystem:
def __init__(self):
self.drift_detectors = {}
self.performance_trackers = {}
self.alert_manager = AlertManager()
def setup_monitoring(self, model_deployment: Dict):
"""Setup comprehensive monitoring voor deployed model"""
model_id = f"{model_deployment['model_version']}"
# Data drift monitoring
self.drift_detectors[model_id] = DataDriftDetector(
reference_data=model_deployment['training_data_sample']
)
# Performance tracking
self.performance_trackers[model_id] = PerformanceTracker(
expected_metrics=model_deployment['baseline_metrics']
)
# Setup alerts
self.setup_alerting_rules(model_id, model_deployment)
def monitor_inference_data(self, model_id: str, inference_data: np.ndarray,
predictions: np.ndarray, ground_truth: Optional[np.ndarray] = None):
"""Monitor incoming inference data voor drift en performance"""
monitoring_results = {
'timestamp': datetime.utcnow().isoformat(),
'model_id': model_id,
'data_drift': {},
'performance_metrics': {},
'alerts': []
}
# Data drift detection
if model_id in self.drift_detectors:
drift_results = self.drift_detectors[model_id].detect_drift(inference_data)
monitoring_results['data_drift'] = drift_results
if drift_results['drift_detected']:
alert = {
'type': 'data_drift',
'severity': 'warning',
'message': f"Data drift detected for model {model_id}",
'details': drift_results
}
monitoring_results['alerts'].append(alert)
self.alert_manager.send_alert(alert)
# Performance monitoring
if ground_truth is not None and model_id in self.performance_trackers:
performance = self.performance_trackers[model_id].track_performance(
predictions, ground_truth
)
monitoring_results['performance_metrics'] = performance
if performance['degradation_detected']:
alert = {
'type': 'performance_degradation',
'severity': 'critical',
'message': f"Performance degradation detected for model {model_id}",
'details': performance
}
monitoring_results['alerts'].append(alert)
self.alert_manager.send_alert(alert)
return monitoring_results
Kubernetes-Native Pipelines
Kubeflow Pipelines met distributed training, auto-scaling en resource management. Helm charts voor reproducible deployments en GitOps workflows met ArgoCD integration.
Model Lifecycle Management
MLflow Model Registry met versioning, staging en production promotion. Automated model validation, A/B testing frameworks en canary deployments voor risk mitigation.
Edge-to-Cloud Deployment
Hybrid deployment strategies van cloud tot edge devices. NVIDIA Jetson support, model compression, quantization en synchronization tussen edge nodes en central cloud.
Monitoring & Observability
Comprehensive monitoring met Prometheus, Grafana en Jaeger. Model drift detection, performance tracking, data quality monitoring en automated alerting systems.
Platform & Infrastructure Integration
Onze MLOps oplossingen integreren met cloud-native infrastructuur en enterprise platforms. Van multi-cloud deployment tot on-premises Kubernetes clusters, we ondersteunen flexible en schaalbare AI operations.
Cloud Platforms
AWS: EKS, SageMaker, S3, Lambda
Azure: AKS, ML Studio, Blob Storage
GCP: GKE, Vertex AI, Cloud Storage
Multi-cloud: Anthos, Azure Arc
Container Orchestration
Kubernetes: Native deployments
Helm: Package management
Istio: Service mesh, traffic control
Knative: Serverless workloads
CI/CD Integratie
GitOps: ArgoCD, FluxCD
CI/CD: GitHub Actions, Jenkins, GitLab
Testing: PyTest, Great Expectations
Security: Twistlock, Falco, OPA
Data & Storage
Feature Stores: Feast, Tecton
Data Lakes: Delta Lake, Apache Iceberg
Streaming: Apache Kafka, Pulsar
Databases: PostgreSQL, MongoDB, Redis