Reinforcement Learning & Robotica

Intelligente agenten die leren van interactie, geoptimaliseerd voor complexe besluitvorming en robotica-toepassingen

← Terug naar overzicht

Reinforcement Learning Ecosysteem

Onze reinforcement learning oplossingen combineren state-of-the-art algoritmen met praktische implementaties voor robotica en autonome systemen. We specialiseren ons in multi-agent omgevingen, sim-to-real transfer en curriculum learning strategieën voor complexe besluitvormingsprocessen.

Multi-Agent Reinforcement Learning Pipeline Omgeving (Environment) Agent 1 Policy π₁ Agent 2 Policy π₂ Agent 3 Policy π₃ Centrale Coördinator Shared Experience Communication Actie a₁ Actie a₂ Actie a₃ R₁ R₂ R₃ Legenda: Acties Beloningen Communicatie Coördinatie

Technische Implementatie (voorbeeld)

// Multi-Agent PPO Implementation met Centralized Training, Decentralized Execution
import torch
import torch.nn as nn
import torch.optim as optim
from typing import Dict, List, Tuple

class MultiAgentPPO:
    def __init__(self, num_agents: int, state_dim: int, action_dim: int):
        self.num_agents = num_agents
        self.agents = []

        # Initialiseer individuele agent policies
        for i in range(num_agents):
            agent = {
                'actor': ActorNetwork(state_dim, action_dim),
                'critic': CriticNetwork(state_dim * num_agents),  # Centralized critic
                'optimizer_actor': optim.Adam(actor.parameters(), lr=3e-4),
                'optimizer_critic': optim.Adam(critic.parameters(), lr=1e-3)
            }
            self.agents.append(agent)

    def select_actions(self, states: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor]:
        actions = []
        log_probs = []

        with torch.no_grad():
            for i, agent in enumerate(self.agents):
                action_dist = agent['actor'](states[i])
                action = action_dist.sample()
                log_prob = action_dist.log_prob(action)

                actions.append(action)
                log_probs.append(log_prob)

        return torch.stack(actions), torch.stack(log_probs)

    def update(self, batch_data: Dict):
        for epoch in range(self.ppo_epochs):
            for agent_idx, agent in enumerate(self.agents):
                # Actor update met clipped surrogate objective
                ratio = torch.exp(new_log_probs - old_log_probs[agent_idx])
                clipped_ratio = torch.clamp(ratio, 1-self.clip_epsilon, 1+self.clip_epsilon)
                actor_loss = -torch.min(ratio * advantages, clipped_ratio * advantages).mean()

                # Critic update met global state information
                global_state = torch.cat(batch_data['states'], dim=-1)
                value_pred = agent['critic'](global_state)
                critic_loss = nn.MSELoss()(value_pred, batch_data['returns'])

                # Backpropagation
                agent['optimizer_actor'].zero_grad()
                actor_loss.backward()
                agent['optimizer_actor'].step()

                agent['optimizer_critic'].zero_grad()
                critic_loss.backward()
                agent['optimizer_critic'].step()

# Curriculum Learning Framework voor complexe taken
class CurriculumLearningScheduler:
    def __init__(self, initial_difficulty: float = 0.1):
        self.current_difficulty = initial_difficulty
        self.success_threshold = 0.8
        self.failure_threshold = 0.3
        self.difficulty_increment = 0.1

    def update_curriculum(self, success_rate: float) -> float:
        if success_rate > self.success_threshold:
            # Verhoog moeilijkheidsgraad
            self.current_difficulty = min(1.0, self.current_difficulty + self.difficulty_increment)
        elif success_rate < self.failure_threshold:
            # Verlaag moeilijkheidsgraad
            self.current_difficulty = max(0.1, self.current_difficulty - self.difficulty_increment)

        return self.current_difficulty

    def generate_task_parameters(self) -> Dict:
        return {
            'obstacle_density': self.current_difficulty,
            'target_speed': 0.5 + (self.current_difficulty * 1.5),
            'noise_level': self.current_difficulty * 0.2,
            'time_limit': 100 - (self.current_difficulty * 30)
        }

Multi-Agent Systemen

Geavanceerde CTDE (Centralized Training, Decentralized Execution) algoritmen voor coöperatieve en competitieve multi-agent omgevingen met communication protocols en emergent behavior analysis.

Sim-to-Real Transfer

Domain randomization en domain adaptation technieken voor succesvolle overdracht van getrainde policies van simulatie naar werkelijke robotica-toepassingen met minimaal performance verlies.

Model-Based RL

World models en planning algoritmen zoals MuZero en Dreamer voor sample-efficiënte learning in complexe omgevingen met onvolledige observaties en sparse rewards.

Robotica Integratie

Real-time control loops, sensor fusion en safety constraints voor autonome robotica systemen met adaptive behavior en fail-safe mechanismen.

Platform & Tool Integration

Onze RL implementaties integreren naadloos met bestaande robotica platforms en simulation frameworks. We ondersteunen ROS/ROS2 voor robotica, MuJoCo en Isaac Sim voor physics simulation, en PyTorch/JAX voor machine learning backends.

Simulation Frameworks

MuJoCo: High-fidelity physics simulation
Isaac Sim: NVIDIA Omniverse robotica
AirSim: Autonomous vehicle simulation
PyBullet: Real-time collision detection

Hardware Platforms

ROS2/Nav2: Robot navigation stack
PX4/ArduPilot: Drone autopilot systems
KUKA iiwa: Collaborative robot arms
Boston Dynamics: Quadruped robotics

Cloud & Edge Deployment

NVIDIA Jetson: Edge AI inference
AWS RoboMaker: Cloud robotics simulation
Google Cloud IoT: Device management
Azure IoT Edge: Hybrid deployment

Safety & Verification

Formal Verification: Safety property checking
HAZOP Analysis: Risk assessment protocols
IEC 61508: Functional safety standards
ISO 13849: Machinery safety requirements