Reinforcement Learning Ecosysteem
Onze reinforcement learning oplossingen combineren state-of-the-art algoritmen met praktische implementaties voor robotica en autonome systemen. We specialiseren ons in multi-agent omgevingen, sim-to-real transfer en curriculum learning strategieën voor complexe besluitvormingsprocessen.
Technische Implementatie (voorbeeld)
// Multi-Agent PPO Implementation met Centralized Training, Decentralized Execution
import torch
import torch.nn as nn
import torch.optim as optim
from typing import Dict, List, Tuple
class MultiAgentPPO:
def __init__(self, num_agents: int, state_dim: int, action_dim: int):
self.num_agents = num_agents
self.agents = []
# Initialiseer individuele agent policies
for i in range(num_agents):
agent = {
'actor': ActorNetwork(state_dim, action_dim),
'critic': CriticNetwork(state_dim * num_agents), # Centralized critic
'optimizer_actor': optim.Adam(actor.parameters(), lr=3e-4),
'optimizer_critic': optim.Adam(critic.parameters(), lr=1e-3)
}
self.agents.append(agent)
def select_actions(self, states: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor]:
actions = []
log_probs = []
with torch.no_grad():
for i, agent in enumerate(self.agents):
action_dist = agent['actor'](states[i])
action = action_dist.sample()
log_prob = action_dist.log_prob(action)
actions.append(action)
log_probs.append(log_prob)
return torch.stack(actions), torch.stack(log_probs)
def update(self, batch_data: Dict):
for epoch in range(self.ppo_epochs):
for agent_idx, agent in enumerate(self.agents):
# Actor update met clipped surrogate objective
ratio = torch.exp(new_log_probs - old_log_probs[agent_idx])
clipped_ratio = torch.clamp(ratio, 1-self.clip_epsilon, 1+self.clip_epsilon)
actor_loss = -torch.min(ratio * advantages, clipped_ratio * advantages).mean()
# Critic update met global state information
global_state = torch.cat(batch_data['states'], dim=-1)
value_pred = agent['critic'](global_state)
critic_loss = nn.MSELoss()(value_pred, batch_data['returns'])
# Backpropagation
agent['optimizer_actor'].zero_grad()
actor_loss.backward()
agent['optimizer_actor'].step()
agent['optimizer_critic'].zero_grad()
critic_loss.backward()
agent['optimizer_critic'].step()
# Curriculum Learning Framework voor complexe taken
class CurriculumLearningScheduler:
def __init__(self, initial_difficulty: float = 0.1):
self.current_difficulty = initial_difficulty
self.success_threshold = 0.8
self.failure_threshold = 0.3
self.difficulty_increment = 0.1
def update_curriculum(self, success_rate: float) -> float:
if success_rate > self.success_threshold:
# Verhoog moeilijkheidsgraad
self.current_difficulty = min(1.0, self.current_difficulty + self.difficulty_increment)
elif success_rate < self.failure_threshold:
# Verlaag moeilijkheidsgraad
self.current_difficulty = max(0.1, self.current_difficulty - self.difficulty_increment)
return self.current_difficulty
def generate_task_parameters(self) -> Dict:
return {
'obstacle_density': self.current_difficulty,
'target_speed': 0.5 + (self.current_difficulty * 1.5),
'noise_level': self.current_difficulty * 0.2,
'time_limit': 100 - (self.current_difficulty * 30)
}
Multi-Agent Systemen
Geavanceerde CTDE (Centralized Training, Decentralized Execution) algoritmen voor coöperatieve en competitieve multi-agent omgevingen met communication protocols en emergent behavior analysis.
Sim-to-Real Transfer
Domain randomization en domain adaptation technieken voor succesvolle overdracht van getrainde policies van simulatie naar werkelijke robotica-toepassingen met minimaal performance verlies.
Model-Based RL
World models en planning algoritmen zoals MuZero en Dreamer voor sample-efficiënte learning in complexe omgevingen met onvolledige observaties en sparse rewards.
Robotica Integratie
Real-time control loops, sensor fusion en safety constraints voor autonome robotica systemen met adaptive behavior en fail-safe mechanismen.
Platform & Tool Integration
Onze RL implementaties integreren naadloos met bestaande robotica platforms en simulation frameworks. We ondersteunen ROS/ROS2 voor robotica, MuJoCo en Isaac Sim voor physics simulation, en PyTorch/JAX voor machine learning backends.
Simulation Frameworks
MuJoCo: High-fidelity physics simulation
Isaac Sim: NVIDIA Omniverse robotica
AirSim: Autonomous vehicle simulation
PyBullet: Real-time collision detection
Hardware Platforms
ROS2/Nav2: Robot navigation stack
PX4/ArduPilot: Drone autopilot systems
KUKA iiwa: Collaborative robot arms
Boston Dynamics: Quadruped robotics
Cloud & Edge Deployment
NVIDIA Jetson: Edge AI inference
AWS RoboMaker: Cloud robotics simulation
Google Cloud IoT: Device management
Azure IoT Edge: Hybrid deployment
Safety & Verification
Formal Verification: Safety property checking
HAZOP Analysis: Risk assessment protocols
IEC 61508: Functional safety standards
ISO 13849: Machinery safety requirements